Медико-биологическая статистика - Гланц

После окончания докторантуры мне часто случалось помогать друзьям и коллегам разобраться с тем или иным статистическим вопросом. Постепенно потребность в кратких интуитивно понятных и в то же время достаточно строгих объяснениях привела к появлению двухчасовой лекции включавшей даже демонстрацию слайдов. Эта лекция охватывала использование статистических методов в медицине, ошибки в их применении и способы избежать этих ошибок. Лекции оказались настолько успешными, что теперь уже мне пришлось выслушать многочисленные предложения написать вводный курс по статистике.  

 

Так возникла эта книга. Адресована она студентам медикам, научным работникам, преподавателям и врачам практикам. Ее с равным успехом можно использовать и для самостоятельного изучения и в качестве учебного пособия. Например, она послужила основой курса медицинской статистики в Калифорнийском университете в Сан-Франциско. Курс объемом 81 лекционный час включал первые восемь глав книги. Кроме того, еженедельно проводился семинар. Книга также использовалась при чтении краткого курса статистики для студентов стоматологического факультета. Этот курс охватывал материал первых трех глав. Кроме того книга пригодилась мне при чтении интенсивного курса, который занимал полсеместра и был рассчитан на основательное усвоение всего материала. Среди многочисленных слушателей были студенты старших курсов, аспиранты и научные сотрудники.

Эта книга имеет несколько отличий от других вводных курсов статистики и именно эти отличия похоже и обусловили ее популярность.

Во-первых, в книге отчетливо проведена мысль, что результаты многих биологических и медицинских работ основаны на не правильном использовании статистических методов и способны только ввести в заблуждение. Большинство ошибок связано с неправомерным использованием критерия Стьюдента. Причина такой концентрации, вероятно, кроется в том, что в пору учебы будущие исследователи не успели узнать о существовании других статистических методов (в учебниках, по которым они учились, первая глава обычно посвящена критерию Стьюдента). Напротив, дисперсионный анализ, если и излагается, то, как правило, в последней главе, до которой редко кто добирается. Между тем медицинские данные чаще требуют именно дисперсионного анализа, и именно он служит основой для всех параметрических критериев, поэтому свою книгу я начинаю изложением дисперсионного анализа и лишь затем, как частный случай, разбираю критерий Стьюдента.

Во-вторых, насколько можно судить по публикациям, в медицинских исследованиях крайне важно умение правильно сравнить результаты, полученные по нескольким группам. Поэтому в книге подробно описаны методы множественного сравнения.

В-третьих, я считал, что книга по медицинской статистике не должна быть калькой даже с хорошего и логически стройного учебника математической статистики. Как показывает многолетняя практика, выслушав традиционный курс математической статистики, в котором методам проверки гипотез предшествует теория оценивания студент, увы, не обретет понимания связи статистических методов с медицинскими задачами. Поэтому я избрал иной способ подачи материала. Стержень книги образуют проверка гипотез и оценка эффективности лечения. Я глубоко убежден, что именно такой подход дидактически и практически отвечает задачам медицинских исследований.

Большинство использованных в книге примеров заимствовано из реальных медицинских исследований. В ряде случаев мне пришлось пойти на упрощение данных, например, сделать равными объемы выборок. Эти упрощения позволили сосредоточиться на существе излагаемых методов, не отвлекаясь на технические детали. При этом если в тексте рассматривается случай выборок равного объема, то в приложении вы найдете формулы на случай выборок произвольного объема.

Готовя к печати первое издание этой книги, я задумывал его как введение, знакомящее с идеями, понятиями и методами статистики, введение, за чтением которого последует более углубленное изучение традиционных курсов. Мои надежды оправдались, но, кроме того, оказалось, что многие исследователи стали пользоваться книгой как практическим пособием. Это побудило меня во втором издании более широко осветить методы множественного сравнения. В третьем издании обсуждение чувствительности критериев было пополнено рассмотрением планирования и анализа экспериментов. Наконец, в четвертом издании, которое вы держите в руках, появилась новая глава, посвященная анализу выживаемости. Помимо того, методы множественного сравнения пополнились критерием Тьюки, а в раздел, посвященный регрессионному анализу, были включены метод сравнения кривых регрессии и метод Блэнда-Алтмана дня сравнения двух способов измерения.

Надо сказать, что некоторые пожелания читателей не нашли отражения в новом издании. И сделано это было совершенно сознательно. Часть читателей советовала вместо неявного использования понятий теории вероятностей дать строгое изложение ее основ. Другие предлагали дополнить книгу изложением многомерных статистических методов. В частности, предлагалось изложить методы множественной регрессии. Важность этих методов для меня вполне очевидна. Однако попытка рассмотреть их в рамках данной книги существенно изменила бы ее содержание.

Скачать книгу

Комментарии  

 
0 #5 Dr.Kolob 24.02.2013 00:15
Thank you very much for this book!
Цитировать
 
 
+1 #4 Анна 17.01.2013 16:58
Спасибо большое!
Цитировать
 
 
0 #3 Ротарь Оксана 20.12.2011 12:33
Спасибо огромное за электронный вариант книги!!
Цитировать
 
 
0 #2 венигрет 17.08.2011 10:45
Поддержу! Спасибо за книги!
Цитировать
 
 
+1 #1 СтуденьЛенивый 15.07.2011 15:04
привет от медиков-статистиков! :-*
Когда уже видео будет?? А вообще спасибо, конечно!
Цитировать
 

Добавить комментарий


Защитный код
Обновить

Краткое содержание

Вход для слушателей