Методы прогнозирования в условиях рынка - Тихонов

 

Развитие прогностики как науки в последние десятилетия привело к созданию множества методов, процедур, приемов прогнозирования, неравноценных по своему значению. По оценкам зарубежных и отечественных систематиков прогностики уже насчитывается свыше ста методов прогнозирования, в связи с чем перед специалистами возникает задача выбора методов, которые давали бы адекватные прогнозы для изучаемых процессов или систем [19. 27].

 

 

 

 

Для тех. кто не является специалистами в прикладной математике, эконометрике, статистике, применение большинства методов прогнозирования вызывает трудности при их реализации с целью получения качественных и точных прогнозов (Прогнозирование в системе Statistica в среде Windows). В связи с этим, каждый метод рассмотрен очень подробно с приведением рекомендаций по практическому применению.

Особенностью данного пособия является рассмотрение тонкостей применения того или иного метода. Учебное пособие разделено на четыре части, в каждой из которых рассмотрен свой класс методов прогнозирования.

В первой части рассмотрены теоретические аспекты построения и применения методов и алгоритмов прогнозирования. Приведена классификация наиболее распространенных методов.

Во второй части рассмотрены классические адаптивные модели прогнозирования, реализованные в MS Excel. Несмотря на то, что они программно реализованы в некоторых статистических и эконометрических пакетах прикладных программ, предложен именно ручной счет, освоив который гораздо легче понимать принципы и специфику данных методов прогнозирования.

В третьей части основное внимание уделено применению классических нелинейных многофакторных моделей прогнозирования. Совершенно очевидно, что сложные нелинейные многофакторные модели невозможно просчитать вручную, поэтому подробно рассматривается возможность применения пакета Statistica для этих целей.

В четвертой части рассмотрены нейросетевые методы прогнозирования и особенности их построения. Многие источники подробно рассматривают теорию нейронных сетей, опуская описание практического их использования.

Для понимания того, какие преимущества дают предлагаемые методы анализа данных и прогнозирования, необходимо указать на три принципиальные проблемы. возникающие при прогнозировании.

Первая проблема это определение необходимых и достаточных параметров для оценки состояния исследуемой предметной области.

Вторая проблема заключается в так называемом «проклятье размерности». Желание учесть в модели как можно больше показателей и критериев оценки может привести к тому, что требуемая для ее решения компьютерная система вплотную приблизится к «пределу Тьюринга» (ограничению на быстродействие и размеры вычислительного комплекса в зависимости от количества информации, обрабатываемой в единицу времени).

Третья проблема наличие феномена «надсистемности». Взаимодействующие системы образуют систему более высокого уровня, обладающую собственными свойствами, что делает принципиально недостижимой возможность надсистемного отображения и целевых функций с точки зрения систем, входящих в состав надсистемы.

Для преодоления перечисленных проблем делаются попытки применения таких разделов современной фундаментальной и вычислительной математики, как нейрокомпьютеры, теория стохастического моделирования (теория хаоса), теория рисков, теория катастроф, синергетика и теория самоорганизующихся систем (включая генетические алгоритмы) [123. 134]. Считается, что эти методы позволят увеличить глубину прогноза за счет выявления скрытых закономерностей и взаимосвязей среди плохо формализуемых обычными методами макроэкономических, политических и глобальных финансовых показателей.

Представленное учебное пособие может быть рекомендовано для студентов, аспирантов и преподавателей, занимающихся проблемами совершенствования методов и моделей прогнозирования, а также вопросами их практической реализации.

Скачать книгу

Комментарии  

 
0 #5 Анна 03.03.2012 12:54
Очень полезно! Спасибо!
Цитировать
 
 
0 #4 Цаца 27.10.2011 11:02
хоть Статистика и не для временных рядов, но прогнозированию мало книг уделено.....
Цитировать
 
 
+1 #3 авиктор 13.09.2011 10:43
Spasibo! ++1
Цитировать
 
 
+3 #2 Татьяна 07.08.2011 08:49
Спасибо
Цитировать
 
 
+4 #1 hosni 16.07.2011 10:31
буду хоть тут первым! :lol:
спасибо, хоть и сложновато дается.... :o :cry: :sad:
Цитировать
 

Добавить комментарий


Защитный код
Обновить

Краткое содержание

Вход для слушателей